Structural, optical, and electrical properties of self-assembled films of PbSe nanocrystals treated with 1,2-ethanedithiol.

نویسندگان

  • Joseph M Luther
  • Matt Law
  • Qing Song
  • Craig L Perkins
  • Matthew C Beard
  • Arthur J Nozik
چکیده

We describe the structural, optical, and electrical properties of high-quality films of PbSe nanocrystals fabricated by a layer-by-layer (LbL) dip-coating method that utilizes 1,2-ethanedithiol (EDT) as an insolubilizing agent. Comparative characterization of nanocrystal films made by spin-coating and by the LbL process shows that EDT quantitatively displaces oleic acid on the PbSe surface, causing a large volume loss that electronically couples the nanocrystals while severely degrading their positional and crystallographic order of the films. Field-effect transistors based on EDT-treated films are moderately conductive and ambipolar in the dark, becoming p-type and 30-60 times more conductive under 300 mW cm(-2) broadband illumination. The nanocrystal films oxidize rapidly in air to yield, after short air exposures, highly conductive p-type solids. The LbL process described here is a general strategy for producing uniform, conductive nanocrystal films for applications in optoelectronics and solar energy conversion.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Impact of Surface-Bound Small Molecules on the Thermoelectric Property of Self-Assembled Ag₂Te Nanocrystal Thin Films.

Small molecules with functional groups can show different electron affinity and binding behavior on nanocrystal surface, which in principle could be used to alternate the electrical transport in self-assembled nanocrystal thin films. These small molecules can also serve for scattering the phonons to reduce the thermal conductivity. Here, we present our research on the thermoelectric characteris...

متن کامل

Determining the internal quantum efficiency of PbSe nanocrystal solar cells with the aid of an optical model.

We determine the internal quantum efficiency (IQE) of the active layer of PbSe nanocrystal (NC) back-contact Schottky solar cells by combining external quantum efficiency (EQE) and total reflectance measurements with an optical model of the device stack. The model is parametrized with the complex index of refraction of each layer in the stack as calculated from ellipsometry data. Good agreement...

متن کامل

Enhanced Physical Properties Of Indium Tin Oxide Films Grown on Zinc Oxide-Coated Substrates

Structural, electrical and optical properties of indium tin oxide or ITO (In2O3:SnO2) thin films on different substrates are investigated. A 100-nm-thick pre-deposited zinc oxide (ZnO) buffer layer is utilized to simultaneously improve the electrical and optical properties of ITO films. High purity ZnO and ITO layers are deposited with a radio frequency sputtering in argon ambient with plasma p...

متن کامل

The Effect of pH on the Optical Band Gap of PbSe Thin Film with Usability in the Quantum Dot Solar Cell and Photocatalytic Activity

This study was an attempt to provide a simple solution processed synthesis route for Lead Selenide (PbSe) nanostructure thin films using the chemical bath deposition (CBD) method which is commercially available in inexpensive precursors. In the CBD method, the preparation parameters play a considerable role and determine the nature of the final product formed. Known as two main factors, the eff...

متن کامل

Structural, Electrical and Optical Properties of Molybdenum Oxide Thin Films Prepared by Post-annealing of Mo Thin Films

Molybdenum thin films with 50 and 150 nm thicknesses were deposited on silicon substrates, using DC magnetron sputtering system, then post-annealed at different temperatures (200, 325, 450, 575 and 700°C) with flow oxygen at 200 sccm (standard Cubic centimeter per minute). The crystallographic structure of the films was obtained by means of x-ray diffraction (XRD) analysis. An atomic force micr...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • ACS nano

دوره 2 2  شماره 

صفحات  -

تاریخ انتشار 2008